計算機視覺(CV)和自然語言處理(NLP)早先是兩個較為d立的研究L域。CV 重點關注如何用計算機代替人眼對目標完成識別、跟蹤、測量等任務,對圖像進行處理;NLP 則研究計算機如何處理、運用自然語言,包括語言生成、問答、對話等任務。近年來,以深度神經網絡為代表的機器學習和模式識別技術被廣泛應用于 CV 和 NLP L域,取得了目前先進的效果。
近年來,研究者們試圖將動作控制也引入到「視覺-語言」任務的框架中。吳琦將此類任務命名為 V3A(Vision, Ask, Answer, Act),在給定視覺輸入后,我們希望機器能夠提出問題、回答問題、并通過和人以及機器之間的語言交流執行某些動作。
例如,「Vision+Ask」的任務包含視覺問題生成、根據問題生成查詢、圖像描述等;「Vision+Answer」的任務包含視覺問答、視覺對話等;「Vision+Act」的任務包含指稱表達、視覺對齊(visual grounding)、語言引導的視覺導航、具身視覺問答、具身指稱表達等。
資料獲取 | |
服務機器人在展館迎賓講解 |
|
新聞資訊 | |
== 資訊 == | |
» 2025具身機器人行業未來展望報告-當前 | |
» 機器人和嵌入式邊緣AI應用設計的計算平臺 | |
» 人腦與機器人大腦對應關系:大小腦對中央控 | |
» 人形機器人運動控制:制約商業化落地進程的 | |
» 山東省機器人產業高質量發展行動計劃(20 | |
» 2025AI賦能教育:高考志愿填報工具使 | |
» 核電人形機器人的八點特性:高輻射耐受性, | |
» 核電人形機器人專題報告[工業應用場景], | |
» 機器人的大腦在手眼腦協同中發揮怎么樣的作 | |
» 機器人的“手眼腦”協同有哪些瓶頸和難點? | |
» “手眼腦”協同對機器人上肢操作能力有哪些 | |
» 機械臂+靈巧手當前能夠完成哪些工作? | |
» 具身智能——決定 機器人泛化能力天花板的 | |
» 服務機器人兼容方面檢測:電磁兼容與協議兼 | |
» 服務機器人可信方面檢測:數據可信、算法可 | |
== 機器人推薦 == | |
![]() 服務機器人(迎賓、講解、導診...) |
|
![]() 智能消毒機器人 |
|
![]() 機器人底盤 |
![]() |